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NOMENCLATURE

Civ concentration of diffusing species;

Co» concentration at solid surface;

Cons concentration far from the surface;

D, diffusion coefficient ;

fifs oo, coefficients in Blasius series for stream
function;

N, y-component of the flux of the diffusing
species;

Sc, = v/D, the Schmidt number ;

Uy, us..., coefficients in power-series expansion of U ;

U, velocity at outer edge of boundary layer;

Ve Uy, components of the velocity ;

X, distance from the stagnation point along the
surface;

¥, perpendicular distance from the surface;

B, velocity derivative at the surface;

ré. = (-89298;

7. dimensionless distance from the surface;

e, dimensionless concentration;

@, @, ..., coefficients in Blasius series for mass trans-
fer;

v, kinematic viscosity;

¥, stream function.

INTRODUCTION

DIFFERENTIAL equations describing fluid flow and mass
transfer in two-dimensional boundary layers are (see, for
example, Schlichting [1], pp. 110-112)
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The boundary conditions for a constant concentration on
the solid surface are
¢ =¢p vy=1v,=0 aty =0 }
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Ci = Cxr Uy aty Q0.

The velocity U(x) is the inner limit of the appropriate outer
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(Euler) solution which describes the fluid motion outside
the boundary layer.

If viscous dissipation is ignored, the same equations would
apply to heat transfer in boundary layers, in which case ¢;
should be replaced by the temperature T and D replaced
by the thermal diffusivity @ = k/pC, In either case the
pertinent physical properties are taken to be constant.

The specified boundary conditions on the solid surface are
not completely general. Nevertheless, a constant concentra-
tion on the surface is commonly encountered in mass-
transfer problems as well as in the analogous heat-transfer
problems and provides a useful starting point. The considera-
tion of an arbitrary varjation of concentration with position
on the surface involves a higher order of complexity.

The normal component v, of the velocity is taken to be
zero even though a non-zero mass-transfer rate implies a
non-zero interfacial velocity. The consequences of such an
interfacial velocity have been treated by Stewart [2] for
flow past a flat plate at zero incidence, by Olander [3] for a
rotating disk, and by Acrivos [4] for boundary-layer mass
transfer at infinite Schmidt number. In the absence of calcu-
lated results of the effect of an interfacial velocity applicable
to a specific situation, the mass-transfer rate calculated for
v, = 0 can be corrected by a factor based on the papers cited.

Solutions for the boundary-layer problem stated in equa-
tions (1)+4) can be obtained by a number of methods (see
Schlichting [1]). Exact solutions have been obtained for
certain restricted geometries. Approximate methods have
also been developed which are less restricted but also less
reliable. In many cases the validity of approximate methods
is judged by a comparison with the exact solutions.

One class of exact solutions involves series expansions in
terms of “‘universal” functions which can be tabulated. These
functions are universal in the sense that they are defined so as
to be independent of the specific form of the function U(x).
How this is done can be seen by referring ahead to equations
(6), (9), (10) and (11).

The Blasius series is perhaps the simplest form of a series
solution and involves Taylor series expansions in x about the
stagnation point or the leading edge of the body. This pro-
cedure was suggested by Blasius in 1908. Other series, such
as that of Gortler [5], involve expansions in more compli-
cated functions of x.
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VELOCITY PROFILES

For symmetric, two-dimensional flow past a cylindrical
surface with a rounded nose, the external velocity U(x) can
be expressed as a power series:

Ulx) = uyx + uzx? + usx® 4+ upx” + . {5)

Because of the assumed symmetry about a plane parallel to
the undisturbed flow, only the odd powers of x are present.

The Blasius series then expresses the stream function
Y(x, y) also as a power series in x:

o= D] tunxfin + dusxan) + busxfon)
+ 8usx 1o} + 10ugxfoln)
+ 20 xS+ (6)

where

n = yiluyv), (7

and where  is related to the velocity components by the
equations
oY 1
U= —. b, = —#’. (8)

X

One wants to tabulate functions independent of u,, u;,
ete. The first two functions, f; and f,. satisfy this criterion,
but f, -, etc.. do not. Hence, it is necessary to split up the
higher order terms. For example.
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The universal functions thus are f, /5. gs. his. elc., and have
been calculated notably by Tifford {6]. Such tables are re-
produced by several authors (Schlichting [17], pp. 150-151.
Curle [7], p. 26). Because it is a power series in x, the Blasius
series is most useful in the region near the stagnation point.

CONCENTRATION PROFILES
In a similar manner the concentration (or the temperaturc)
can be expanded in a power series (see, for example, Schlicht-
ing [1]. p. 319):
GO g + X200
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The functions @, and ©, are “universal” functions inde-
pendent of u,, u,. etc., although they do depend on the
Schmidt number. In order to form universal functions. the
higher order coefficients must be broken up in a manner

simitar to the hydrodynamic functions | compare equations
]
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The differential equations for some of the universal mass-
transfer, boundary-layer functions are

(1;8¢) @) + 1,6, = 0. !
(1/S¢) @F + 1,0, — 2@, = —12f,0). ‘
(1:Schuy + fray — 4fiay = 304505, el
(LiSey by + fiby — 4fiby = —121,0; + ¥1,0, ;

= 30hs@),
and the corresponding boundary conditions are

0,=0,=a,=b, =0 atg =0.
{ [BRY
e, = 1

@, =a,=b, =0 atnp =,

The functions f}. f3, gs and hs appearing in equations (12)
are the same universal functions defined in equations (6) and
%.

MASS-TRANSFER COEFFICIENTS
The differential equations for the nincteen universal func-
tions were solved numerically. Since the universal mass-
transfer, boundary-layer functions depend upon S as well
as on #. their tabulation could become unwieldy. The local
rate of mass transfer is of interest and is given by

Niv = - D 1 Heyo
= -D = e, —en 1M e
AX 0.",:() o \/} v () 0
u u H-
+ 2 x205(0) + 2 x*OL0 +  x"@40)
u, Uy iy
N :\ 4

iy

The coefficients necessary for the calculation of the rate of
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nass transfer are given in Table 1. For heat transfer, the
Prandtl number replaces the Schmidt number. The range of
Schmidt numbers in Table 1 was selected to cover heat- and
mass-transfer problems of practical interest. For heat trans-
fer in molten metals the Prandtl number is near 0-01, for
gases it is near 07, and for other liquids it ranges from 5 to
several hundred. For mass transfer in gases the Schmidt
number is near 1, and in liquids it ranges from several

hundred to several thousand. Some idea of the accuracy of
the numbers in Table 1 can be gained from a comparison of
the results with a basic mesh size of 0-02 with those for a
basic mesh size of 0-0108. These suggest that the errors of the
numbers in Table 1 are less than 0-01 per cent for small
Schmidt numbers (through Sc = 1) but increase to about 0-1
or 0-2 per cent for Sc = 1000.

Asymptotic forms of the coefficients for large and for small

Table 1. Dimensionless mass-transfer coefficients from Blasius series

Sc 0(0) 2(0) a4(0) b4(0) a6(0) (0) d5(0)
0-005 0-0545 0-0424 0-0492 —0-0114 0-0539 —00264 0-0083
0-01 0-0760 0-0598 0-0704 —0-0171 0-0781 -00414 00138
0-02 0-1054 0-0844 0-1009 -00260 01134 -0-0652 0-0228
0-05 0-1610 0-1323 0-1619 —0:0450 0-1856 -0-1177 0-0433
010 0-2195 0-1847 0-2304 —0-0675 02678 —0-1808 0-0682
0-20 0-2964 0-2557 0-3250 —0:0996 0-3828 -0-2718 0-1042
0-50 04334 0-3866 0-5025 —01613 0-6006 —0-4479 01741
0-70 04959 0-4476 0-5859 —0-1906 0-7036 —0-5319 0-2075
1:00 0-5705 0-5210 0-6868 —0-2262 0-8284 —0-6341 0-2482
2:00 0-7437 0-6931 0-9246 —0-3106 1-1235 -0-8772 0-3450
500 1-0435 09937 1-3418 —0-4595 1-6427 -1-3075 0-5169
10-00 1.3389 12911 17556 —0-6077 2:1587 -1-7372 0-6890
20-00 1-7104 16656 2:2772 —-0:7950 2-8098 —2-2809 0-9071
50-00 2:3529 2:3132 31797 —1-1196 39367 —3-2245 1-2863
100-00 2-9869 2:9518 4-0698 —1-4402 5-0484 —4-1573 1-6613
200-00 37855 3:7556 5-1899 —1-8441 64474 —53330 2:1340
500-00 5-1685 5:1454 7-1265 —2-5436 8-8660 —7-3708 29530
100000 6-5353 6:5160 9-0355 —3-2348 11-2500 —9-3864 37622
Sc a3(0) 5(0) 3(0) €5(0) P50
0-005 0-0577 —0-0304 —0-0160 0-0339 -0-0110
0-01 0-0846 —0-0488 —00263 00582 -00193
0-02 0-1242 —00784 —0-0429 0-0981 —0-0329
0-05 0-2064 —0-1443 —0-0804 0-1888 —0-0640
010 0-3011 —02241 —0-1259 0-2993 —0-1016
0-20 0-4345 -0-3393 —0-1919 04591 —0-1559
0-50 0-6889 —0-5628 -0-3201 0-7691 —-0-2610
0-70 0-8095 —0-6696 —03814 09173 —-0-3113
1-00 0-9560 —0-7998 —0-4562 1-0981 —-0-3726
2:00 1-3032 —1-1096 —06342 1-5291 —0-5190
500 19156 —1-6595 -0-9505 2:2966 —0-7803
10-00 2:5249 —2:2094 —1-2670 30665 -1-0429
20-00 32943 —2-9061 —1-6681 4-0438 —1-3768
50-00 4-6266 —4-1162 —2:3652 5:7439 —1.9581
10000 59412 - 53130 —3-0547 74269 —2:5340
200-00 7-5956 —~6-8223 —3-9244 9-5495 —3-2605
500-00 10-4559 —94393 - 54326 13-2286 —4:5199
100000 13-2752 —12:0294 —69254 16-8658 - 57647
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Tuble U continued

sary for the product of the Reynolds number and the Schmidt
number to be large in order for the boundary-layer form of
the equation of convective diffusion [equation (3)] to be
applicable. Otherwise the diffusion layer is too thick, and
more of the outer Euler solution is needed than that repre-
sented by U(x).

The only peculiar feature of the results is that the mass-
transfer coefficients, except @(0). approach the low S¢
asymptote from above rather than below. For many of the
coefficients the low Schmidt number asymptote is hardly

Schmidt numbers are given in Tables 2 and 3. respectively. ~ applicable even at Sc = 001, and it was necessary to extend

These are calculated from equations (15) and (17} (see. for  the numerical calculations to S¢ = 107 in order to verify
example, Acrivos [8]): these asymptotes. Therefore a simple interpolation between

bio(0) = —1:5016 Sc*3

d;6(0) = — 1-8628 S dyo0) = —0-1828 Se!”
€0t = 22556 ¢’ o(0) = 01029 Sct
piz((()) = 26516 szm e (
Fol0) = —3-6335 8¢t

5,400 = 1-0506 St

Piol0) = 00914 Sct
riof0) = —0-0571 St
Siol0) = 00075 Sct”

Se )y (0) b’ o(0) dylO) ¢ ol0) 1ol Flofh Sl
0-005 00527 ~0-0344 ~0-0383 0-0429 0-0487 —00657 0018
001 0-0849 — 00561 —0:0642 00742 00849 —0 1187 00334
002 01315 ~0:0911 --0-1065 01259 0-1448 —01981 (0571
0-03 0-2251 — 01696 — 02024 0-2431 0-2806 —03840 0113
010 0:3317 —0:2647 —0:319] 0-3855 0-4455 —060R7 01744
0-20 0-4822 ~0-4022 — 04883 05912 0-6838 ~09322 02663
0-50 0-7704 —0-6691 ~08173 0-9902 1:1460 S 1S58 D44
0-70 09076 —~0-7969 ~ 09749 11812 1-3673 ~1R381 05202
1-00 10742 —09526 11672 14142 1-6373 -22241 06332
200 1-4699 —1-3238 16257 (9705 22824 30993 03822
500 21688 —~19836 - 24416 29623 34333 ~ 46637 13280
10:00 28652 —2:6442 —3-2594 39585 4:5899 —62384 147774
20-00 37449 — 34818 — 42969 52241 60597 —R2420 23498
5000 52690 —-49374 ~ 61009 74271 8:6190 S1E7341 0 33483
100-00 67730 —6:3776 - 78863 9-608% 111540 < 154951 43385
200-00 86661 ~81944  —10-1394 12:3614 143528 — 193635 55887
500-00 119391 — 113457 — 140475 171337 198993 -27138" 77569
1000-00 151652 — 144658  — 179175 218536 253852 346297 99010
Table 2. Asymptotes for Tuble 3. Asymptotes for For S¢ -+ 7.
large Schmidt numbers small Schmidt numbers o -
e I IS Y LI B 05)
OL,0) = 06608 Sel3 9,0) = 07979 Set? Oy o0 r(%)@l)'l 3 ( ‘ (\‘/“ dx']‘ N
030) = 06658 S¢'? O40) = (5984 S ° ’
ay(0) = 09280 S¢!? di(0) = 06649 S¢' 2 where
B(0) = —0:3339 ¢t Py0) = —01247 S¢t 7 .
ag0) = 1-1592 ¢t a0 = 06981 S¢t p="x e
Py(0) = —0:9719 Sc*? h(0) = —0:2327 S¢t ? R T
W0} = 03917 S¢'7 dgl0) = 0:0436 Sc'* For S¢ — 0.
agl0) = 1-3711 S¢'? agl®) = 07181 Sc¢!' - A
b0) = — 12475 S¢37 Py0) = —0:2244 Sc' 2 | PR L S a7
dy(0) = —0-7190 S¢t dg0) = —0-0997 S¢'* M=o =D [ iU dx]H? '
ey0) = 1-7590 S¢i? 0 = 0112251 o ’
’ 3 ' 2
5?‘0%)2 Ao o Zi“’(’”z e gi: Note that when the Schmidt number s small, it is still neces-
2
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the low and high Sc asymptotes such as that suggested by
Acrivos [8] appears to become more inaccurate for the higher
coefficients.
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